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ABSTRACT The fundamental question “Are sequential
data random?” arises in myriad contexts, often with severe
data length constraints. Furthermore, there is frequently a
critical need to delineate nonrandom sequences in terms of
closeness to randomness—e.g., to evaluate the efficacy of
therapy in medicine. We address both these issues from a
computable framework via a quantification of regularity.
ApEn (approximate entropy), defining maximal randomness
for sequences of arbitrary length, indicating the applicability
to sequences as short as N = 5 points. An infinite sequence
formulation of randomness is introduced that retains the
operational (and computable) features of the finite case. In the
infinite sequence setting, we indicate how the “foundational”
definition of independence in probability theory, and the
definition of normality in number theory, reduce to limit
theorems without rates of convergence, from which we utilize
ApEn to address rates of convergence (of a deficit from
maximal randomness), refining the aforementioned concepts
in a computationally essential manner. Representative appli-
cations among many are indicated to assess (/) random
number generation output; (ii) well-shuffled arrangements;
and (iii) (the quality of) bootstrap replicates.

LEINYS

The expressions “picking at random,” “chance,” and “due to
chance” are ambiguous terms. Probability theory, widely
believed by nonmathematicians to conclusively fix these no-
tions, retains fundamental deficits here, including inapplica-
bility to finite, especially short sequences and moreover a vivid
failure to delineate infinite sequences of clearly different type,
highlighted below. The simplest place to discuss the question
of randomness is in the context of trying to make the words
“Random Sequence” precise. Attempts to do this for infinite
sequences have a history via Borel, von Mises, Church, Kol-
mogorov, Chaitin, Martin-Lof, and others. Their ideas and a
rigorous formulation are given by Kolmogorov and Usphenski
(KU) (1). KU demonstrate that the following set of criteria, for
which there is strong intuitive plausibility and historical con-
sensus, can be made precise: (i) typicality (i.e., belonging to any
reasonable majority, having no obvious pattern, not very special);
(i) ““chaotic” (i.e., there is no simple law governing the alternation
of its terms); (iif) stability of frequencies (i.e., for the full sequence
and properly chosen infinite subsequences).

KU adapt their infinite-sequence algorithmic formulation of
randomness to the finite case; however, they are careful to
point out “the essentially asymptotic nature of all of our
considerations” (ref. 1, p. 402). Despite the conceptual ele-
gance of KU’s theory, such basic problems as delineating a
sufficiently patternless arrangement of agricultural field plots
(2), a random assignment of patients to treatments in clinical
trials in medicine (3), any notion of random card shuffle (4, 5),
and selection of random Latin squares (6, 7) lie outside of the
scope of their theory.
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Furthermore, there appears to be a critical need to develop
a (computable) formulation of “closer to random,” to grade
the large class of decidedly nonrandom sequences. It appears
that many analysts looking for chaos simply require a means of
calibrating (short) sequences from this perspective. As another
example, the capability to linearly order by randomness may be
essential, e.g., in evaluating the efficacy of therapy in medical
settings (8). Thirdly, segmenting “junk” DNA (9) into distinct
subclasses may bring new insights to genetic function. While
classical statistical tests can reject a null hypothesis of ran-
domness based on various types of violations (10-14), they fail
to address this issue at all—they provide no metric for prox-
imity to randomness.

The purposes of this paper are (i) to define a notion of
randomness for sequences of arbitrary length, particularly the
short sequences that are not encompassed by the KU theory,
that additionally allows one to classify nonrandom sequences
as closer to random; and (ii) to introduce an infinite sequence
formulation of randomness that retains the operational fea-
tures of the finite case, thereby emphasizing a notion of
computable random sequence.

Degrees of Irregularity

We formulate a notion of randomness for finite sequences in
terms of degrees of irregularity, which features the “approx-
imate stability of frequencies” criterion from the KU list. An
essential tool for this purpose is approximate entropy (ApEn)
(15), specified according to

Definition 1: Given a positive integer N and nonnegative
integer m, with m = N, a positive real number r and a sequence
of real numbers u: = (u(1), u(2), ... u(N)), let the distance
between two blocks x(i) and x(j), where x(i) = (u(i), u(i + 1),
...u(i + m — 1)), be defined by d(x(i), x(j)) = maxe=12. ... m
(luG + k — 1) — u(j + k — 1)|). Then let C/"(r) = (number of
j =N — m + 1 such that d(x(i), x()) = r)/(N —m + 1).

Remark: The numerator of CJ"(r) counts, to within resolu-
tion r, the number of blocks of consecutive values of length m
that are approximately the same as a given block of consecutive
values.

Now define
N-m+1

1
CNomrl X s,

and ApEn(m, r, N)(u) = ®"(r) — ®""'(r),m = 1,

(1)

with ApEn(0, r, N)(u) = —®'(r).

ApEn(m, r, N)(u) measures the logarithmic frequency with
which blocks of length m that are close together remain close
together for blocks augmented by one position. Thus, small
values of ApEn imply strong regularity, or persistence, in a

Abbreviations: KU, Kolmogorov and Usphenski; ApEn, approximate
entropy; OW, Ornstein and Weiss; LIL, law of the iterated logarithm;
i.i.d., independent identically distributed.
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sequence u. Alternatively, large values of ApEn imply sub-
stantial fluctuation, or irregularity, in w.

We initially restrict attention to binary sequences of Os and
1s in order to set forth the basic ideas in the simplest possible
setting. We set r < 1 as our measure of resolution and observe
that the values of the distance metric d(x(Z), x(j)) will be only
0 or 1. Thus, we are monitoring matches in the blocks x(i) and
x(j)—i.e., whether Ju(i + kK — 1) — u(j + kK — 1)| = 1 or 0. With
this restriction at hand, we suppress the dependence of ApEn
on r and introduce

Definition 2: A binary sequence of length N, u{, is said to
be {m, N}-random—or equivalently, {m, N}-irregular—if
ApEn(m, N) (u{™) = max, ApEn(m, N) (u), where the
maximum is evaluated over the set of all 2V binary sequences
of length N.

Definition 3: u® is said to be N-random—or equivalently,
N-irregular—if it is {m, N}-random form =0, 1,2, .. ., mcie(N),
and the critical values of the nondecreasing in N integer-valued
sequence mqir(N) are defined by the following rule:

Mei(N) = max(m: 22m =N).

The specification of mc(N) is motivated by an application
of the methods of Ornstein and Weiss (OW) (16) to the present
context in which if uy = (1), u(2), ... u(N)), N=1isa
so-called “typical realization” (ref. 16, p. 914) of a Bernoulli
process, then limy—.« ApEn(mcit(N),N) (un) = h = entropy of
the process. In fact, OW show that if L(m) is any sequence that
grows faster than exponential—e.g., 22" is one instance—then
when N is in the range L(m) < N < L(m + 1), we calculate
(1/m) log(minimum number of blocks of length m needed to
cover 1/2 of the sequence (u(1), 4(2), . . . u(N))) and observe
that as m — oo, this ratio converges to 4.8 The intuitive idea
here is that—asymptotically, as m — «—scanning blocks of
length m is enough to determine the entropy rate of a process
from a typical realization. Remarkably, the same scanning crite-
rion allows us to extract maximally irregular sequences—even
when N is small. We interpret mc¢(N) as imposing a limit of
gradation as a function of sequence length by indicating a
maximal order of joint distribution frequencies consistent with a
convergent entropy estimate that furthermore avoids a “curse of
dimensionality” by the superexponential growth rate of L(m).

Example: Consider the cases N = 5 and N = 6, where
meit(N) = 1, and we require that ApEn(0, N)(u) and ApEn(1,
N)(u) be maximal. For N = 5, max ApEn(0, 5)(u) ~ 0.673 is
attained for 20 of the 25 = 32 possible binary sequences of
length 5. The {0, 5}-random sequences are those with 3 Os and
2 1s, or 3 1s and 2 0s. Of these 20 sequences, only 4 are {1,
5}-random: {1,1,0,0,1}, {1,0,0,1,1}, {0,0,1,1,0}, and {O,
1,1,0,0}, with max ApEn(1, 5) () =~ 0.7133. For these {1,
5}-random sequences, the four length-2 blocks {0, 1}, {0, 0},
{1, 1}, and {1, 0} each occur once, whereas for all 16 other {0, 5}
random sequences, at least one of these length-2 blocks is absent.
This allows us to characterize the 5-random binary sequences as
the equivalence class for subsequences of length 5 in realizations
of a partially exchangeable process (17, 18) where approximate
stability of frequencies holds. By approximate stability of fre-
quencies, we mean |1/N (no. of js in the sequence) — 1/2| is as
small as possible forj = 0, 1 and |=; (no. of {j, k} blocks in the
sequence) — 1/4| is as small as possible forj = 0, 1; k = 0, 1.

Remark: For partially exchangeable processes, the equiva-
lence classes of subsequences of realizations of length N are

§We can improve (i.e., increase) this choice for mcri(N) and retain
consistency with asymptotics to estimate the rate of entropy. OW (ref.
16, Lemma 3, pp. 914-915) require only limmy—. L(m)/|A|" = x,
where |4| denotes the cardinality of the state space, rather than for
all A > 0. Thus, in the binary case one can specify—e.g., mcrit(N) =
max(m: (2.1)" = N). Nonetheless, we retain our specified choice of
meit(N) to generate a slightly larger class of N-random sequences, for
applications with small N (e.g., N < 50).
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those whose members start and end with the same value and
have the same number of {0,0}, {0,1}, {1,0}, and {1,1} blocks.
However, the frequency of occurrence of the blocks within a
sequence need not closely approximate 1/4 as in the case of
N-random sequences.

Pursuing the relationship between members of equivalence
classes of length N segments of realizations of partially ex-
changeable processes and 5-random sequences, notice that
from the intuitive perspective of randomness, or irregularity,
and equivalence class membership, {1,0,1,0,1} should not be
considered random (and it is not {1, 5}-random, missing both
{0,0} and {1,1} of length-2 blocks). It is not, however, so
immediately evident that u = {1,0,1,1,0} should be rejected.
However, ApEn(1, 5) (1) = 0.3667 < max, ApEn(1, 5)(x) =
0.7133; more immediately {1, 0} occurs twice while {0, 0} does
not occur, ruling out membership in an equivalence class with
approximately stable frequencies.

In a more algebraic direction, observe that the four 5-ran-
dom sequences can be derived from the single sequence
{1,1,0,0,1}, by reversing order, and then negating the original
and reversed versions. This suggests a more general question
of identifying a minimal set of N-random sequences or gen-
erators from which all others can be derived by using a
restricted set of permutations and their negations of the
resulting sequences.

For N = 6, 20 of the 2° binary sequences are {0, 6}-random,
those sequences with 3 Os and 3 1s. Of these 20 sequences, 12
are {1, 6}-random. They have the property that of the four
length-2 blocks {0, 1}, {0, 0}, {1, 1}, and {1, 0}, three occur
once, and the fourth occurs twice. Retaining the idea of
equivalence classes of partially exchangeable processes where
approximate stability of frequencies holds as a characteriza-
tion of N-random sequences, we broaden the definition of
equivalence class to mean those sequences for which

1
max; i m(no. of {j k} blocks in the sequence) — 1/4

is as small as possible for the given value of Nandj =0, 1; k
= 0, 1. We then deduce that {1,0,1,0,1,0} is clearly not
{1,6}-random, and perhaps less obviously, {1,0,1,0,0,1} is not
{1,6}-random (2 occurrences of {1,0} and {0,1}, 1 occurrence
of {0,0}, none of {1,1}).

N = 6 is the shortest sequence length for which we can
construct approximately ergodic sequences, in the sense that
there is the best approximation, for a given N, to equality of
phase and time averages. To see this, consider the 6 X 6 array
u; = (Ui, Ui, - - - Uig), 1 =i = 6 specified as follows.

u;=110010
u;=011001
u;=101100
u;=100110
us=010011
ug=001101

Identifying the successive values in a given sequence as a
time ordering and the vectors u; (1 =i < 6) as points in a phase
space, we have

6 6
1/6 2uiL =1/6 Juir = 1/2,
L=1 i=1
and
1/5[no.{j,k} blocks in row {] =~ 1/5[no.{j,k}blocks in column L]
forl=si<6;1=L=6andj=0,1;k=0,1.

Approximate equality means that both sequence frequen-
cies are as close as possible to 1/4 given N = 6. Observe that
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both the rows and columns of the above array are 6-random
sequences.

As noted in the introduction, there is an essential need to
make precise the notion of “more (or closer to) random” in
comparing two typically nonrandom sequences.

Definition 4: A binary sequence of length N, u, is said to be
more {m, N}-random than v if ApEn(m, N) (u) > ApEn(m, N)
(v); and u is said to be more N-random than v if ApEn(m, N)
(u) = ApEn(m,N) (v) form =0, 1,2, ..., mi(N), with strict
inequality for at least one value of m < mci(N).

With the above at hand, two general points should be made
about N-random sequences. (i) As N increases, (number of
N-random sequences)/2N — 0. To see this, it suffices to
consider the 0-random sequences—i.e., single elements. For
even N = 2n, maximally irregular sequences have, as a
minimum requirement, precisely # Os and n 1s. Hence, a crude
upper bound on the fraction of such (maximally irregular)

sequences is
2n\ (5,
()

This quantity = (2n)!/((n!)?2%"), which by Stirling’s formula

Thus, the fraction of binary sequences that are maximally
irregular is bounded above asymptotically by O(1/Vn).

Now define {excess of 0 over 1}y («) = max(0, no. of Os in
(u) — no. of 1s in (u)), and symmetrically for {excess of 1 over
0}~ (#). By avirtually identical argument, the fraction of nearly
maximally (small, bounded excess) irregular sequences — 0 as
N — «, Thus, true maximal irregularity is atypical, increasingly
so as sequence length increases, and we must include se-
quences of arbitrarily large excess (as N — =) to ensure the
possibility of a majority, one of KU’s “conditions.” Restated,
this establishes an incompatibility of conditions i and iii in the
KU list—i.e., to maintain stability of frequencies as best as
possible, we must relinquish the requirement of belonging to
any reasonable majority, for finite sequences.

(ii) An N + 1-random sequence does not necessarily have an
N-random sequence as prefix. However, most N-random se-
quences cdn be made N + 1-random by an appropriate choice
of 0 or 1 either preceding or after the N-random sequence.
These properties make it particularly important to investigate
a minimal set of generators, permutations and negations that
can generate the full set of N-random sequences without
carrying out (2¥ — no. of obviously regular sequences) eval-
uations of ApEn(m, N) form =0, 1, ..., mci(N).

Correlatively problematic, historically, with notions of ran-
domness is making precise what we mean by realizations from
independent random variables. A useful formulation from the
perspective of N-randomness is a quantification of maximal
irregularity relative to a given sequence u. To make this
precise, we need a conditional form of ApEn.

Definition 5: Let u = (u(1), u(2), ... u(N)) and v = (v(1),
v(2), ... v(N)) be binary sequences. For given m, let x(i) =
(@), u(@ +1),...u@@ +m— 1)) andy(j) = (v(j),v(j + 1),...
v(j + m —1)). Set C"* (v | u) = (no. of j = N — m + 1 such
that d(x(i),y(j) =r)/(N — m + 1), withr < 1, where d(x(i), y(j))
= maxg=12,..m (u@ + k — 1) —v(j + k — 1)) and

N-—-m+1

(v || u) = 2 1ogCr ).

N-m+1
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Then define ApEn(m, N)(v ||u) = @"(v || u) — &"*'(v| u), m
= 1, with

ApEn(0, N)(v [|u) = —®'(v || w).

We say that v* is {m, N}-maximally irregular with respect to
u if ApEn(m, N) (v* | u) = max, ApEn(m, N) (v || ). Similarly,
we say that v* is N-maximally irregular with respect to u if
ApEn(m, N) (v* || ) = max, ApEn(m, N) (v | u) form = 0,
1,2,..., mgiN). We denote u and v as mutually maximally
irregular if each is maximally irregular with respect to the
other.

Note that neither u nor v need be {m, N}-irregular for v to
be {m, N}-maximally irregular with respect to u; thus, this
definition applies to comparisons of correlated sequences.
Furthermore, Definition 5 extends to the continuous state
space setting, thus formalizing a cress-ApEn notion in this
broader context. Such a notion is potentially very important,
not simply in assessing the independence of realizations but in
comparing sequences from, e.g., two distinct yet intertwined
variables in a network (e.g., heart rate and respiratory rate).

Infinite Binary Sequences

The Void: An Acute Need for a Computable Formulation of
Randomness. KU (1), Martin-Lof (19), and Chaitin (20) start
their theory of infinite random sequences with sets of com-
putable sequences as members of a sample space that contains
the random elements. However, in forming the constructive
support of the uniform Bernoulli measure, the set that con-
tains the infinite random sequences, identifying a specific
realization becomes impossible because of the lack of com-
putability that arises in formation of the intersection of all sets
of effective measure 1 (ref. 1, p. 393). The essential point, as
Turing (21) showed, is that limits of sequences of computable
numbers—i.e., those generated by a finite length computer
program—are in general noncomputable.

Martin-L6f and Kolmogorov also show that the set of
random sequences—i.e., those in the constructive support of
the uniform Bernoulli measure—coincide with the set of
algorithmically complex numbers. Although the idea of arbi-
trarily complex algorithms as the basis of computation of the
elements of a random sequence has great intuitive appeal, it
also leads to the impossibility of designating and displaying a
single random string. This impossibility was clarified in a
striking series of papers by Chaitin (e.g., refs. 20 and 22). In his
setting, if we let U be an optimal prefix computer and (2 be the
probability that U halts on a realization of a random string, the
impossibility problem is well-summarized in the quotation: “First,
we will never learn more than a handful of those tantalizingly
information-packed bits of (). Second, even if we had an oracle
supplying all bits of (2, we could not make any practical use of
them, since the time to decompress () to a solution of the halting
problem, X, grows non-recursively” (23).

Thus, it is no surprise that algorithmic probability theory as
in KU’s formulation, while even leading to a proof that the law
of the iterated logarithm (LIL) holds for random Kolmogorov
sequences (24), can never become operational in the sense of
exhibiting even one such sequence.

To further motivate our formulation below, we consider
notions of randomness directly linked to a number-theoretic
perspective. Modern measure-theoretic probability (25, 26)
together with the plausible contention that normal numbers
(27, 28) are good candidates for realizations of infinite random
sequences led to the theorem that almost all numbers in the
unit interval are normal. But Turing (21) showed that almost
all normal numbers cannot be computed by any possible
algorithm. Now we can think of the method of continued
fractions as a finite algorithm; i.e., the computation of each
rational approximation, P,/Q,, to any irrational number,
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needs finitely many steps. Formally, every member of the
continuum has a continued fraction expansion (28, 29). Thus,
it may appear that we can compute any normal number
algorithmly. However, to compute a continued fraction one
must also specify an initial condition, or seed. A consequence
of Turing’s proof (21) is that for almost all numbers that can
be defined, no seed can be found, even in principle.

Operational Formulation. The previous subsection indi-
cates limitations that are at once mathematically and philo-
sophically significant, yet of the utmost practical importance,
since procedures to generate arbitrarily long random se-
quences are necessarily constructive. We retain our focus on
operationalization and bring in some definitions. For infinite
binary sequences u = (u(1), u(2), ...) and r < 1, define u™ =
(1), u(2), ..., u(N)), and define ApEn(m, N)(u): = ApEn(m,
N)@™). Then define ApEn(m)(u): = limy—.. ApEn(m, N)
(™), assuming this limit exists. Now introduce

Definition 6: An infinite binary sequence u is called com-
putationally random, hereinafter denoted as C-random, iff
ApEn(m)(u) = log 2 for allm = 0.

Some intuitive motivation for this definition is provided by
the fact that log2 is a maximal entropy rate for binary
sequences, with the desirable interpretation of maximal infor-
mation conveyed per digit generated. Alternatively, if Ap-
En(m)(u) < log2 for some m, then there exists a block ay, az,
as, . . . dm, Am+1 Such that limy_.. conditional frequency (a,, +1
llai,az as,. . .an) > 1/2; in other words, the finite prior history
block biases the subsequent observation, giving some predict-
ability. Conversely if ApEn(m)(u) = log2 for all m, then no
such conditional information gain exists for any finite block of
a;s. Clearly, these properties are very plausible features of any
sequence we purport to call random.

Importantly, observe that for an infinite sequence of binary
random variables {X;}, i = 1, with probability P = 1/2 each of
0 and 1, an assumption of joint independence as defined by
classical probability theory reduces to C-randomness of real-
izations with probability one—i.e., that ApEn(m)(u) = log2 for
all m. Similarly, the normality of a binary number again
reduces to the condition that ApEn(m)(u) = log2 for allm =
0. Thus, both these fundamental notions are seen as limit
statements, without rates of convergence, which we refine
below.

It would seem a priori plausible that to specify examples of
u satisfying Definition 6, we would take appropriate limits of
sets of maximally irregular initial segments. However, this is
out of the question because of

THEOREM 1. There exists no infinite binary sequence u with the
property that all initial segments u™ are maximally irregular.

Proof: We argue by contradiction. If all initial segments u™
are maximally irregular, in particular, for all n, u®" has n Os
and n 1s, by the maximality of ApEn(0, 2n) (u®V). It follows
that for all n, each pair of contiguous elements {(u(2n — 1),
u(2n))} must be either {(0,1)} or {(1,0)}. Thus, neither the
triple {(0,0,0)} nor {(1,1,1)} ever occurs for any {(u(n), u(n +
1), u(n + 2))} in u, violating the required limiting frequency
of 1/8 of both these triples to satisfy normality.

Turning to normal numbers, to the best of our knowledge,
the only known computable binary normal number is
0.110111001011101111000 ..., the binary version of
0.1234567891011. . . . To make progress on any formulation of
computable random sequences we need a substantial cata-
logue of computable normal numbers. To this end, we prove
an innocuous-looking theorem that should be quite useful.

THEOREM 2. Assume we are given a normal binary number u
= (u(1), u(2), . ..), a binary sequence v = (v(1), v(2), . . .), and
f: Z* — R* such that f{(N)/N — 0 as N — «. If {the number
of 1 = Nsuch that u(i) # v(i)} = f(N) for all N, then v is a normal
binary number.

Proof: Let diff,,(N)(u, v): = the numberof i = N —m + 1
such that the length m block (u(i), u(i + 1), ...u(i + m — 1))
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# (@), v(i + 1), ...v(i + m — 1)). Then, diff,,(N)(u, v) =
mf(N); since f(N)/N — 0 as N — =, the limiting frequency of
each length m block of v equals that of u. Since u was assumed
normal (each length m block with limiting frequency 27), it
follows that v is normal.

Deficit from Maximal Irregularity. Next, we indicate how
close the first portion of u is to {m,N}-random, and then
N-random, via

Definition 7: For an infinite binary sequence u, define
def,,[u™]: = max-y ApEn(m,N) (v) — ApEn(m,N) (u™).

Definition 8: The deficit from maximal equidistribution
DC[M(N)]Z = MaXm=<mcrit(N) (defm[u(N)]).

We apply De[u™] to delineate binary normal numbers into
subclasses, as follows. For normal numbers (sequences) u,
ApEn(m)(u) = log2 for all m by the equidistribution property,
so def,,,[u™] — 0 as N — o for fixed m. Observe that there may
be normal numbers for which De[u™)] does not converge to 0
as N — o, since meit(N) — » as N — o; it would be interesting
to construct examples of such numbers. We partition the
remaining normal sequences into classes by the rate of con-
vergence of lim supy—. De[u™] to 0 as a function of N.

We now construct families of extremely slowly convergent
normal numbers from a single normal binary number.

THEOREM 3. Pick a normal binary sequence u. For any g: Z*
— R* such that (i) g(N) — 0 as N — x; (ii) NVg(N)
monotonically increases to < as N — o; and (iii) lim (g(N)/
defo[u™]) — o« as N — o, we can construct a normal binary
sequence v such that for arbitrarily large N, De [v(M] > g(N).

Proof: Define f(N): = [2N Vg(N)], where [x]: = the greatest
integer < x, and a sequence v recursively, as follows. Set v(1)
= u(1); given v(1), ..., v(N — 1), (i) set v(N) = u(N) if u(N)
= 0; (ii) set v(N) = 0 if u(N) = 1 and diff;(N — 1) (u,v) = f(N)
— 1, otherwise set v(N) = 1 if u(N) = 1. Given a sequence u
and function f, we denote the constructed sequence v: =
Uconst(f)- Thus, in creating v from u, we are imposing a bias of
excess Os that decreases sufficiently with increasing sequence
length so that limiting frequencies are unchanged. By Theorem
2, which applies directly by the monotonicity of £, v is normal.
We claim that there exists arbitrarily large N with defo[v(¥)] >
g(N), for which it follows that De[vV)] > g(N).

Since f(N)/N — 0 and (no. of 1s inu™)/N — 1/2, it follows
that lim supy—. (diff;(N)(u,v) — f(N)) = 0. Now let ey: = max
({excess of 0 over 1}y (u™), {excess of 1 over 0}n (u™))/2N;
then upon unraveling of definitions, it is immediate that

def[u®™] =
[(05 + £)log(0.5 + £y) + (0.5 — ex)log(0.5 — &y) — log0.5], [1]

we denote the right-hand side of Eq. 1 by logpert(en). By
Taylor’s Theorem, logpert(e) =~ 2¢? for ¢ sufficiently small.
Since by assumption iii, lim(Vg(N)/V defo[u™]) — = as N —
w, it follows that lim(Vg(N)/exV2) — © as N — «. In
particular, we deduce that lim(NVg(N)/{excess of 1 over 0}n
™)) — « as N — o, hence lim(f(N)/{excess of 1 over O}y
™)) — x as N — . Therefore, for all N sufficiently large,
{excess of 1 over 0}y (u™) = 0.1f(N). Since there exists
arbitrarily large N for which diff,(N)(u,v) = f(N), we deduce
from the construction of v that for such N, {excess of 0 over
In(™) = 0.9(N) > 1.5 NVg(N). Finally, reversing some
arithmetic above, for these arbitrarily large N (by the normality
of v),

{excess of 0 overl}y(v™)\?2
N > g(N),

1
def()[V(M] = 5(

verifying the claim and completing this constructive proof.
Remarks: (i) All members of the parametrized family of

functions gg(N) = N™# L(N), 0 < B < 2, where L(N) is a given

slowly varying function (e.g., logN) satisfy conditions i and ii in
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Theorem 3 (similarly for gg(N) = (log N)~F). Thus, either the
normal number u is already extremely slowly convergent—i.e.,
condition iii is not satisfied for any gg(N) in this family—or we
can utilize gg(N) for arbitrarily small B in Theorem 3 to
generate sequences of normal numbers with rates of conver-
gence of frequencies of Os, 1s, {0,0}s, {0,1}s, etc. to their
limiting frequencies that can be made extraordinarily slow.
These rates of convergence can be tuned to particular appli-
cations, providing a reservoir of operationally defined random
numbers suited to particular calculations. The clear need for
such a reservoir of numbers and clarity about what one means
by the word random is exemplified by the recent editorial of
Maddox (30).

(ii) A substantial literature exists in which two almost sure
properties of independent identically distributed (i.i.d.) ran-
dom variables, the LIL and the central limit theorem, are
mandated as requirements for any sequence to be considered
random. Recall the precise statement of LIL: Let X;, X, . ..
be i.i.d. random variables with EX; = 0 and EX? = 1. Let Sn:
=X; + ... + Xy, and let LIL(N) = (2NloglogN)!/2. Then
almost surely lim supy—e Sy/LIL(N) = 1 and lim infy_.Sy/
LIL(N) = —1. Restated for a binary alphabet, LIL implies that
lim sup of {excess of 0 over 1}y is asymptotic to (2Nlog-
logN)!/2. Applying the relationship between the excess func-
tion and def, indicated above, we see that the LIL mandate

requires that
y2NloglogN

] 2
lim supy_..defo[u™] ~ E( N ) = (loglogN)/N,

which is simply one (rate of convergence) subclass from the set
of all C-random sequences.

We can now construct large classes of normal, C-random
numbers violating the LIL, as follows. If even a single binary
normal number u exists satisfying LIL, apply Theorem 3 with
any g(N) — 0 such that NV g(N) monotonically increases — <
and (Ng(N))/(loglogN) — < as N - x—e.g., g(N) = N"V/2 If
no binary numbers satisfy LIL, all applications of Theorems 2
and 3 constructively produce more such numbers. It remains
an open question to construct even a single binary sequence
with rate of convergence of lim supy_..defo[u™¥)] to 0 at least
as fast as that specified by the LIL.

(iii) Having an explicit reservoir of computable random
numbers motivates the importance of developing Rankin’s
formulation of computable probability spaces (31). Here a
probability measure is defined on a Borel Algebra, B of subsets
of S, sequences of computable normal numbers. P would be a
finitely additive set function on B such that P(S) = 1. This kind
of probability theory leads to at most countably valued random
variables; however, their realizations are computable. Much of
the more general noncomputable measure theoretic theory
still holds in this domain; however, a full development with
exploitation of computable realizations of stochastic pro-
cesses, lies in the future.

Thus, a further critical deficiency of classical probability
theory insofar as addressing randomness now glares out—the
“independence” criterion is validated for each of the normal
numbers constructed above, lumping all these sequences into
a single “Random Sequence” category, irrespective of rates of
convergence of De(u). Since we employ finite initial trunca-
tions of such putatively random sequences, an assessment of
how far from maximally irregular these initial segments are is
evidently crucial.

Finally, note that we hardly utilize the full power of De
above. We anticipate that joint distributional considerations
realized by the study of def, for n = 1 will result in new
approaches to further problems.
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Applications and Generalizations

(i) A primary point above is that we develop a computable
framework of randomness entirely apart from the axioms of
probability theory. Of course, ApEn can be applied to the
classical probability and statistics framework via consideration
of almost sure realizations of discrete time processes, with
analytic expressions to evaluate ApEn given, e.g., in ref. 15.

(ii) The binary development above can be mimicked for
application to the k-state alphabet, with the major change that
asymptotic ApEn values tend to logk for maximally random
sequences, In the discrete state, medium- or large-alphabet
setting, one might typically employ ApEn by either directly
clumping together states or effectively doing so with a metric
(via choice of r) to achieve asymptotic computational econo-
mies given by small-state alphabet processes.

(iti) Standard linear congruential random number genera-
tors (32) are conceptually and algorithmically very simple, and
tests to verify the randomness of sequences derived from such
generators evaluate statistical correlation. For sequences of
length, e.g., N = 25, 50, 100, employing X;+; = (aX; + b)mod
(23" — 1) for a and b as in Knuth’s “good” random number
generators (32), we can apply ApEn to determine whether
these {X;} are (nearly maximally) N-random. We would em-
ploy a binary version of this generator, with W; = 1 if X;/(23!
- 1) > 1/2, 0 otherwise.

Similarly, we can apply ApEn to determine the quality of
“independent replicates,” either realized by shuffling or boot-
strapping (33), by assessing how many of the replicate series
are either N-random or nearly so.

(iv) Analysis of what it means to be a well-shuffled deck of
cards (4, 5) generally addresses this notion via the study of
shuffle (permutations and) groups and, in doing so, necessarily
ties the final arrangement to the initial deck ordering. There
seems to be a compelling need to evaluate what a well shuffled
deck is ex nihilo, independent of a starting arrangement. While
no doubt there should be further considerations, ApEn can be
employed to provide a minimum requirement for a well
shuffled deck. To illustrate the application, consider a one-
suited 13-card deck, consisting of a permutation of the num-
bers 1-13, and note the pattern of sign changes from the ith to
the i + 1st element of this permutation, denoting up by 1 and
down by 0, labeling the resultant binary (length 12) vector by
u. For this deck (permutation) to be maximally shuffled, at the
very least we require that u be 12-random. Thus, there must be
6 ups and 6 downs and, furthermore, among the 4{up, up},
{down, down}, {up, down}, and {down, up} blocks, 3 each of
3 of the blocks, plus 2 of the 4th block. This extends to any
length deck, with suit considerations a distinct issue that also
may be addressed via ApEn.

(v) A common empirical question is Are data {u(i)} atypical
or abnormal in some sense? Detecting shifts in irregularity
from relatively short sequences—e.g., <60 points—has been
effectively applied by comparing ApEn(m, r, N)(u) and Ap-
En(m, r, N)(v), for length-N sequences u and v, using small m
and coarse r. The range of m and r for which stable estimates
of ApEn are achievable defines the limits of resolution of this
measure of irregularity for sequences of length N. Discrimi-
nation using small m and coarse r is equivalent, in a classical
probabilistic setting, to saying that low-dimensional (e.g., 2 or
3) joint distributions of two processes on a coarse partition of
the state space are qualitatively different. Any attempt to
estimate and test a model of the underlying phenomena
involving higher dimensional joint distributions would not be
feasible with the given data. This is the case even if strong prior
theory with some empirical support suggests that a more
complex model is required for a meaningful conceptualization
of the phenomena being investigated. The central point is that
the question—TIs there a shift, or a difference in irregularity?—
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does not require a full process specification to obtain an
answer.

(vi) Greater regularity (lower ApEn) generally corresponds
to greater ensemble correlation in phase space diagrams. Such
diagrams typically display plots of some system variable u(i) vs.
u(i — K), for a fixed “time-lag” K, generally with K = 1. A plot
of (u(i), u(i + 1)) may be interpreted as a graphical display of
the support of a 2-dimensional joint steady state measure.
Similarly, a plot of (x(i), u(i + 1), u(i + 2)) represents the
support of a 3-dimensional joint steady state measure. ApEn(1,
r) and ApEn(2, ) are functionals of these measures that assess
underlying process irregularity.

(vii) Despite the fact that nearly all members of continua
are noncomputable, some useful insights for empirical analyses
can be gleaned by a theoretical analysis applying ApEn as a
two-parameter family of statistics in m and r to continuous
state, discrete-time stochastic processes. A central question is
Given an infinite amount of data, can one say that process A
is more regular than process B? In discrete state, the rate of
entropy can be applied to answer this, while for continuous
state processes, there is no nice answer in general. The
flip-flop pair of processes (34) supplies the germane counter-
example: in general, comparison of relative process random-
ness at a prescribed level of resolution is the best one can do.
That is, process B may appear more random than process A on
many choices of partitions, but not necessarily on all partitions
of suitably small diameter. The flip-flop pair are two i.i.d.
processes A and B with the property that for any integer m and
any positive r, there exists s < r such that ApEn(m,s)(A) <
ApEn(m,s)(B), and there exists ¢ < s such that ApEn(m,t)(B)
< ApEn(m,t)(A). Also note that this pair are i.i.d.—the issue
is the continuum of the state space, not any correlation
between successive observations.

Fortunately, for many continuous state processes A and B,
we can assert more than relative regularity, even though both
A and Bwill typically have infinite K—S entropy. For such pairs
of processes, K-S denoted a completely consistent pair (34),
whenever ApEn(m,r)(A) < ApEn(m, r)(B) for any specific
choice of m and r, then it follows that ApEn(n,s)(A) <
ApEn(n,s)(B) for all choices of n and s. For completely
consistent pairs we can assert that process B is more irregular
than process A, without needing to indicate m and . Addi-
tionally, both theoretically and on observed data, we often
observe a relative consistency of ApEn over a statistically valid
range of (m,r) pairs, similar to that given by completely
consistent pairs—whenever the statistical estimate ApEn-
(m,r,N)(A) < ApEn(m,r,N)(B) for an (m,r) pair, then Ap-
En(n,s,N)(A) < ApEn(n,s,N)(B) for all (n,s) pairs in the
range. We indicate elsewhere (35) conjectures to ensure that
A and B are either a completely consistent pair or are relatively
consistent over a specified range in terms of the autocorrela-
tion functions of A and B.

Assuming either complete or relative consistency as in the
previous paragraph, we suggest the program to choose r
relatively coarse in the ApEn(m,r) definition, approximating
the discrete state, small alphabet setting, whereupon applica-
tion with m = 1 or (typically and preferably) m = 2 is often
statistically useful in discrimination (standard deviation of
ApEn(m = 2, r = 20% process SD, N) = 0.06 for a range of
weakly dependent processes, for 60 = N < 1000; see ref. 35).
Clear discrimination has been established via this protocol
both for theoretical processes (15, 36) and in a number of
clinical medical applications (8, 37-42), in which controls were
compared to pathophysiologic subject populations for N as
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small as 60 data points, with relative consistency over a range
of m and r explicitly shown in refs. 39-41.
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